

Cloud Simulations and Retrieved Surface Temperature Biases

Evan Fishbein
Michael Gunson
F. William Irion

AIRS Science Team Meeting Pasadena, CA

19 June 2001

Simulation System Design Philosophy

- Provides a global ensemble of states
- Contains local variability (within retrieval sets), addresses impact of algorithm assumptions
- Is weighted towards retrievable states
 - testing in intractable conditions is not practical use of resources
 - develop algorithms for identifying "hopeless cases", e.g. cloud covered, or little variability
- Aid for validation and error assessment

Cloud Fraction Simulation

- Contains 2 or fewer opaque cloud layers
- Has an applied 30% random (Gaussian) perturbation to forecast cloud fraction to simulate local variability

$$f_i^{\{u\,l\}} = f_{\rm m}^{\{u\,l\}} \left(1 + 0.3n_i\right)$$

- Clouds are spatially uncorrelated in upper and lower layers
- Clouds are small compared to AIRS footprint

$$f_{vi}^{\{ul\}} = \begin{bmatrix} f_i^u \\ f_i^u \end{bmatrix} f_i^l$$

Total Cloud Cover Density

- Impact of local variability model on global statistics
 - Simulated cloud amount is reduced slightly
 - probability of full overcast conditions is reduced by factor of 2
 - near clear conditions are slightly reduced

AIRS Science Team Mtg 19 June 2001 Cloud Simulations -4-

Evan Fishbein

Cloud Cover Local Variability

- Differences from mean within each retrieval set
- Gaussian distribution
 - 10% standard deviation
 - departs from Gaussian behavior at differences greater than 0.1 (constraint on maximum fraction)

Retrieved Surface Temperature Errors

- Retrieved biased 1K cold
 - Comparable over land or ocean
- Accuracy (standard deviation)
 3K

Surface Temperature Error and Cloud Fraction Variability

- Local variability and mean cloud fraction are highly correlated
- A few anomalous points
 - low cloud amount, nominal variability, but large errors

Evan Fishbein

Surface Temperature Bias Observations

- Generally bias is small when cloud fraction is less than 20%
- Error around \square -0.4K in the limit of zero cloud fraction
- Error increases with cloud fraction faster than expected
- Anomalous points (large errors, moderate cloud fractions)
- Cloud clearing problem is singular for multiple cloud layers when fractions are correlated
- Correlation may be two large in simulations
 - opaque clouds increases correlation
 - variability linearly related to mean cloud amount

Cloud Clearing Algorithm

$$R_i = f_i^1 R_1 + f_i^2 R_2 + (1 \square (f_i^1 + f_i^2)) R_S$$

Cloud Clearing Geometric Perspective

- Radiance is area-weighted linear combination of radiances from cloud-free surface and viewed cloud layers
- Fit plane through nine point and determine where it intersects "z" axis (cloud free)
- Plane is defined by three points not on the same line

Cloud Clearing Singular Conditions

Points are clustered

Points are correlated

Cloud Layer 1
Radiance

Cloud Layer 1
Radiance

Cloud Clearing Singular Conditions (cont)

 Non singular if points are correlated, but line includes clear sky

ClearSky Radiance

Cloud Clearing Diagnostics

• Define diagnostics in simulations that characterize tractability of cloud clearing problem

correlation between cloud layers fractions

 error in fitting plane to points and extrapolating to origin

Correlation Diagnostics

 Regress layer fraction with least variability against layer fraction with most variability

$$f_i^{\{1 \text{ or } 2\}} = f_0^{\{1 \text{ or } 2\}} + s f_i^{\{2 \text{ or } 1\}}$$

Diagnostics

- error in fit $\sqrt{\square^2}$ (measure of correlation)
- error in slope \square_s (measure of correlation)
- y intercept $f_0^{\{1,2\}}$ (residual clouds)

19 June 2001

Error in Fit to Cloud Layer Amount

Evan Fishbein

- Weak increase in surface temperature error with fit error
- Correlation between error in fit and surface temperature error is poor

19 June 2001

Error in Estimate of Slope

- Surface temperature error is
 - large when slope error is small (< 0.5) and y intercept is large (> 0.3)
 - small when slope error is larger than 3

Evan Fishbein

Cloud Amount at Intercept

- Surface temperature error decreases with intercept, but
 - large scatter at small intercept with small slope error
 - large scatter at larger intercepts, uncorrelated with slope error

AIRS Science Team Mtg 19 June 2001 Cloud Simulations -17-

Comparison of Correlation Diagnostics

- Test conditions when cloud clearing is possible
 - GSFC test: $f_0 \square 0.02$ or $\sqrt{\square^2} \ge 0.1 f_0$ statistics not improved
 - JPL test: $f_0 \square 0.1$ or $\square_s \ge 2$

AIRS Science Team Mtg 19 June 2001

Cloud Simulations -18-

Assessment of Correlation Diagnostics

- Surface temperature error not significantly improved in cases satisfying tests
- Possible explanations
 - tests are not effective indicators of cloud clearing problem
 - surface temperature bias is generally weakly associated with cloud clearing singularity

• Estimate error on clear sky radiances from regressing plane through points

$$\begin{vmatrix} R_1 \\ R_2 \\ M \\ R_9 \end{vmatrix} = \begin{vmatrix} f_1^1 & f_1^2 & 1 \Box (f_1^1 + f_1^2) \\ f_2^1 & f_1^2 & 1 \Box (f_2^1 + f_2^2) \\ M & M & M \\ R_9 & f_9^1 & f_9^2 & 1 \Box (f_9^1 + f_9^2) \end{vmatrix} \begin{vmatrix} R_{C1} \\ R_{C2} \\ R_S \end{vmatrix}$$

Noise amplification factor (error estimate) is independent of radiances

$$NaF = \square_{R_s} = \sqrt{\left(\mathbf{F}^{\mathrm{T}}\mathbf{F}\right)^{1}}\Big|_{R_s R_s}$$

SVD required to obtain estimate

Noise Amplification Factor

Properties

- minimum of 0.33 for cloudless retrieval sets
- becomes large when plane is not constrained by cloud fractions

Cloud Simulations -21-

Cloud Amplification Factor (cont.)

- 60% of retrieval sets have NaF \[\] 2
- Mean surface temperature bias is ☐1.0K for retrieval sets with NaF ☐ 2

AIRS Science Team Mtg 19 June 2001 Cloud Simulations -22-

Cloud Simulations Updates

- Problems
 - sensitivity of cloud clearing to local variability
 - ad hoc local variability model
 - greater than 50% of retrieval sets have NaF greater 1.7
- Monte Carlo simulations have been used to identify potential cloud fraction models

Revised Cloud Fraction Model

• Randomize using uniform random variates (u)

$$f_i^{\{u\ l\}} = \frac{u_i^{\{u,l\}}}{\overline{u}^{\{u,l\}}} f_{\mathrm{m}}^{\{u\ l\}}$$

Correct lower layer

$$f_{\mathrm{v}\,i}^{\{u\,l\}} = \left[\int_{\mathrm{m}}^{u} f_{\mathrm{m}}^{u} f_{i}^{u} \right]$$

• Adjust lower layer when $f_{vi}^u + f_{vi}^l > 1$

$$f_{\mathbf{v}i}^{l} = f_{\mathbf{v}i}^{l} u_{i}$$

Revised Cloud Fraction Model Characteristics

- Mean cloudiness reduced
- CCM2 Original Average: 0.4420 Average: 0.3528 Median: 0.4116 Median: 0.2963 Std. Dev.: 0.3357 Std. Dev.: 0.2915 Max. Val.: 1.000 Max. Val.: 1.000 Bin Width: 0.010

0.4

0.6

Total Cloudiness

8.0

Local variability increased

0.2

0.0

1.0

Expected Error from CCM2

- Reduced NaF
 - 98% of retrieval states will have NaF < 2
- Global mean surface temperature error will be reduced from 1.7K to 1.0K

Conclusions

- Source of surface temperature bias has not been shown to arise solely from singular cloud clearing conditions, or
- Noise amplification factor may not diagnose singular conditions (it seems to)
 - if a diagnostic can be identified, correlative cloud data can be used to identify problematic conditions
- Simulations have identified a wider range of cloudy conditions where cloud clearing may be difficult
- Simplified test simulations are being implemented to identify sources of bias and validity of NaF or other diagnostics
- Verification of local cloud variability model would improve quality of error estimates from simulation

Cloud Clearing Test Cases

- Case 1: States for all footprints in retrieval set are identical, no cloud or noise (best case scenario)
 - identify whether surface temperature errors arise in the absence of noise, clouds or surface heterogeneity
- Case 2: case 1 with noise
 - differences with case 1 shows degradation from noise
- Case 3: case 2 with clouds
 - differences with case 2 shows degradation from clouds
 - identifies usefulness of NaF and other diagnostics
 - differences with nominal case (includes heterogeneity) addresses impact of cloud clearing assumptions.

